

Desafíos Tecnológicos en la producción

Agustín Giorno Congreso Regional Sudoeste Octubre 2018

Ideas para compartir

- El enfoque "tradicional" de los sistemas de producción
- ¿Con qué variables trabajamos? Cómo comprendemos esas variables
- Las poblaciones productivas
- Los subsidios al sistema como mejorador de eficiencias
- ¿Dónde podemos mejorar? Eficacia de la energía empleada
- Desafíos para la producción

ENFOQUE "TRADICIONAL" DE LOS SISTEMAS

La comunidad vegetal/animal como agente de producción. Modelos

Factores limitantes y su eficiencia de uso Radiación Absorbida (vegetación)

X

Eficiencia en el Uso de la Radiación

=

Productividad Primaria (Tasa)

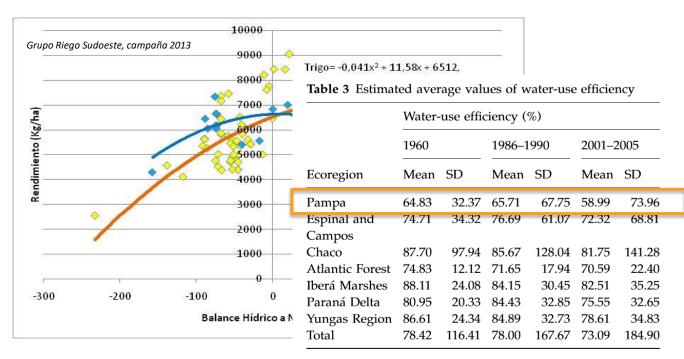
Enfoque determinístico Sobre-simplificación

Índice de Cosecha

Rendimiento en grano

Carga Animal del sistema

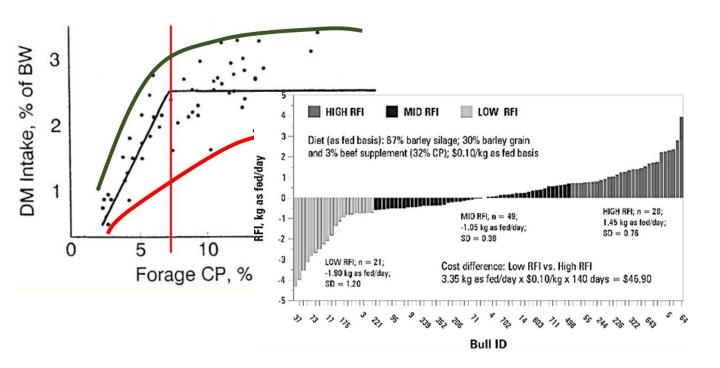
X


Eficiencia de conversión

Producción de carne

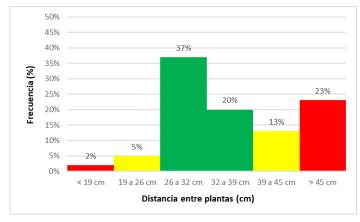
Las variables con las que trabajamos

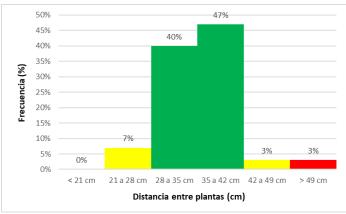
La comunidad vegetal/animal como agente de producción

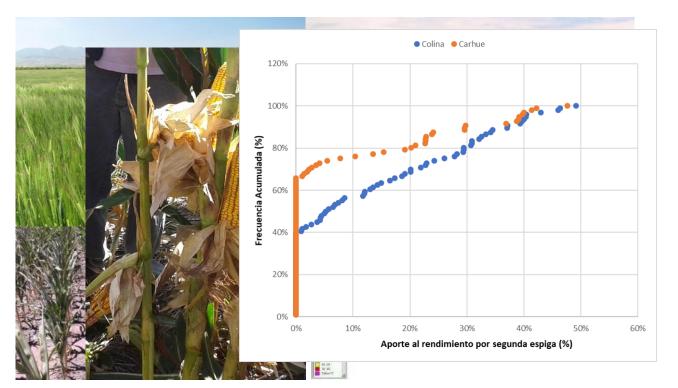


Viglizzo et al. 2011

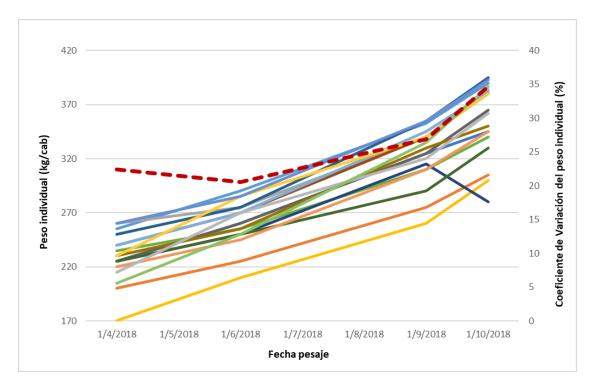
Las variables con las que trabajamos


La comunidad vegetal/animal como agente de producción



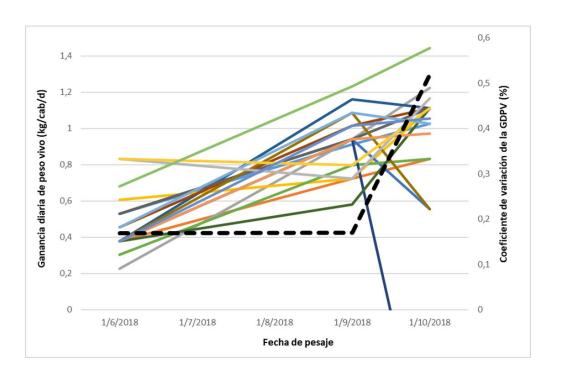

Híbrido	Dow 505 PW	
Densidad Sembrada	60.000 sem/ha	
Densidad Lograda	55.128 pl/ha	
% Logro	91,90%	
CV% Logro	11,40%	

Híbrido	LT 719 VT3		
Densidad Sembrada	55.000 sem/ha		
Densidad Lograda	49.359 pl/ha		
% Logro	89,74%		
CV% Logro	10,36%		



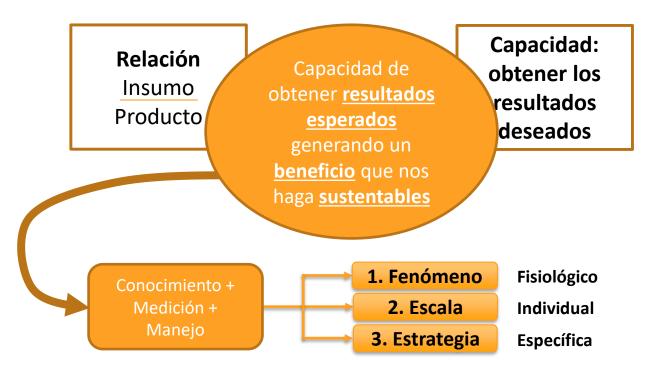
Los subsidios al sistema

Mejorando eficiencias, manteniendo rindes...



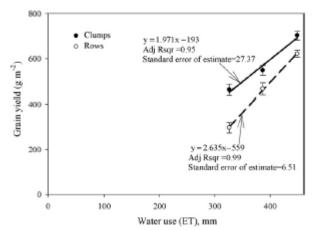
Adaptado de Holgado, F. 2012

Los subsidios al sistema


Mejorando eficiencias, manteniendo rindes...

Eficiencia y eficacia

¿Dónde podemos mejorar?


¿Cuál es el desafío tecnológico?

- Comprender los fenómenos fisiológicos involucrados en cada "pérdida de eficiencia".
- Definir sus implicancias productivas a escala individual, para comprender así su impacto en el sistema (la eficacia en juego).
- Establecer la/s estrategia/s para abordarlo dentro del sistema sin perjuicio de "lo que está bien".

1. Fenómenos.

Comprensión de los problemas – Ciencia hoy!

Irrigation rates	Planting geometry	Tillers plant−1
Dryland (0 mm)	Clump Rows	0.22 a‡ 1.56 b
50 mm	Clump Rows	0.44 a 1.33 b
100 mm	Clump Rows	0.17 a 1.39 b

Cómo afecta la distribución del cultivo y la disponibilidad de agua la producción de macollos y el rendimiento

Kernel setting at the apical and sub-apical ear of older and newer Argentinean maize hybrids

N. Ciancio^a, M. Parco^a, S.J.P. Incognito^b, G.A. Maddonni^{a,c,*}

Y cómo está controlada la producción de granos en espigas de una misma planta

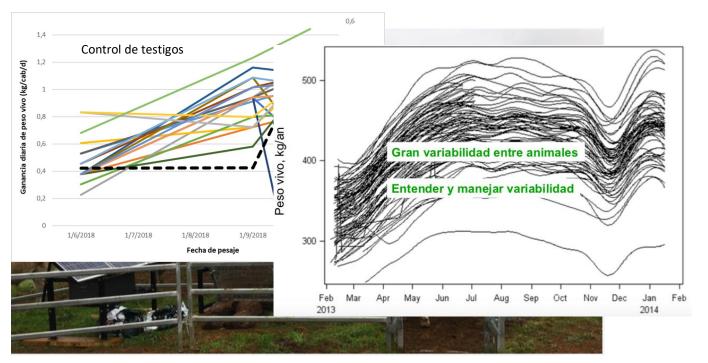
1. Fenómenos.

Comprensión de los problemas – Ciencia hoy!

	Dietas Programadas Restringidas A Vo				A Voluntad	Madalas da aficiansia da		
	T1	T2	Т3	T4	T5	Modelos de eficiencia de		
N° Novillos	36	26	35	27	36	conversión basados en la		
Peso Inicial, kg.	305	305	305	304	305	programación de dietas		
Peso día 84, kg.	420	415	409	418	444	restringidas al 2 5% DV		
Peso final, kg.	553	5	•	•		TBerrimme m 7 4% by		
Días ensayo	164	4	HIGH RFI	MID RFI	LOW RFI			
GDPV, kg/d.	1,51		Diet (as fed basis): 67% barley silage; 30% barley grain and 3% beef supplement (32% CP); \$0.10/kg as fed basis					
Consumo, kg/d.	8 ^b	Diet						
Consumo Total, kg.	1318		and 5% been supplement (52% GP), \$0.10/kg as led basis					
Ef. Kg Gcia/Kg Alim.	0,189 ^b	1						
Selección genómica de animales con bajo consumo residual (alta eficiencia de conversión)		6 0 -1 - -2 -			MID RFI; n = 49; -1.05 kg as fed/day; SD = 0.38	HIGH RFI; n = 28; 1.45 kg as fed/day; SD = 0.76		
		-4 -	Low RFI; n = 21; -1.90 kg as fed/day; SD = 1.20 Cost difference: Low RFI vs. High RFI 3.35 kg as fed/day x \$0.10/kg x 140 days = \$46.90					
	·5 ········	りなっち	& & 33 35	ty 1 8 ty 4	· 教力教育教育教育			

Bull ID

2. Escala


Producción y detección de eventos individuales

Sobran los ejemplos de aplicación y detección para la agricultura (presicion planting, weedit, etc).Lo importante es dirigirlo hacia un plan

2. Escala

Producción y detección de eventos individuales

Gentileza Mercedes Vassallo

3. Estrategia

El verdadero desafío

- El arte de poner en práctica lo que se está averiguando ahora,
- Habiendo comprendido en qué escala se desarrolla y en qué escala es conveniente intervenir.
 - Ej: La GDPV no es un problema de carga sino de asignación de alimento por animal
- Recopilar datos a escala individual y procesarlos es un problema que ya resolvió la informática.
- Sólo resta utilizar esa información al servicio de la eficiencia/eficacia del sistema.

¡Muchas Gracias!

