

Balance de nutrientes en los sistemas mixtos

Fertilización en cultivos de cosecha gruesa

Dra. M Sc. Ing. Agr. Carina R. Álvarez
Profesora Asociada
Cátedra de Fertilidad y Fertilizantes
Facultad de Agronomía-UBA

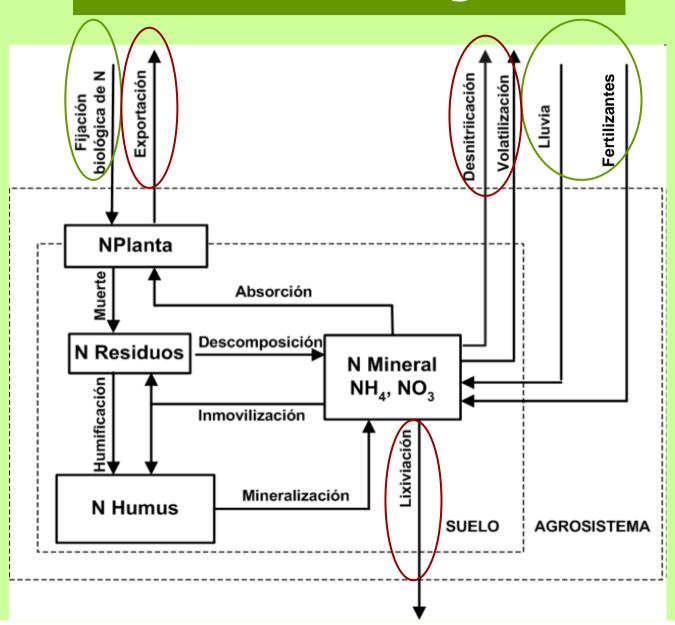
Secuencia de diagnóstico de la capacidad productiva y fertilidad del suelo

Limitantes de la productividad Determina la posibilidad o no de realizar √ Sodicidad cultivos agrícolas. √ Salinidad ■Restricciones de difícil solución y/o costosos. √ Hidromorfismo Abarca grandes áreas. ✓ Tosca Ambientes con distinta capacidad productiva Compactación A nivel de lote. √ Compactación por tránsito El impacto depende de la disponibilidad √ Compactación por pisoteo hídrica. Prevención y remediación. A nivel de lote. **Fertilidad** ■Fertilización/Fijación biológica ✓ Disponibilidad de nutrientes

Análisis de la fertilidad

- ✓ Balance de nutrientes
- √¿El suelo que dice? Análisis de suelo
- ✓ Comparando la disponibilidad con los rendimientos
- √ Conclusiones y reflexiones

Balance de nutrientes

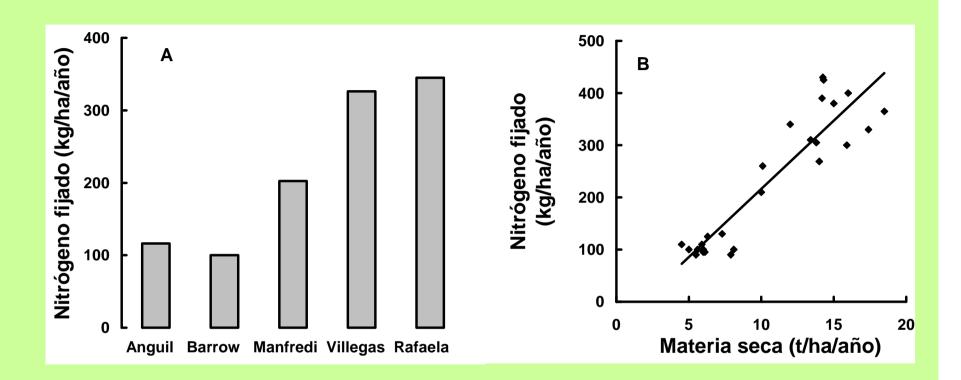

Rotación promedio o clásica:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pastura			Vi/Sj	Mz	Gir	Tr	Vi/Vv	Ceb	Vi/Sj	Tr	Vi/Gir	Ceb		

Rendimientos:

Potencial productivo	Bajo	Medio	Alto
Pastura	5000	6000	7000
Verdeo Invierno	2500	3000	3500
Verdeo Verano	4000	5500	7000
Soja	1600	2200	2800
Maíz cosecha	4000	5000	6000
Girasol	1600	1850	2100
Trigo pan	2500	3300	4100
Cebada	2700	3500	4300

Ciclo de nitrógeno

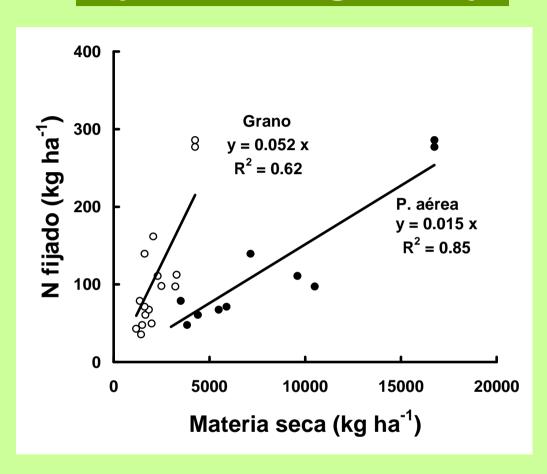


Balance de nitrógeno

Nutriente	Entradas	Salidas
	Fijación	Cosecha
	Fertilización	• Grano
Nitrógeno		Carne
		(Volatilización
	Lluvias =	{Lixiviación
		Desnitrificación

ΔN agrosistema = (N fijado + N fertilizante + N fluvia) – (N exportado + N volatilizado + N desnitrificado + N lixiviado)

Fijación biológica: alfalfa

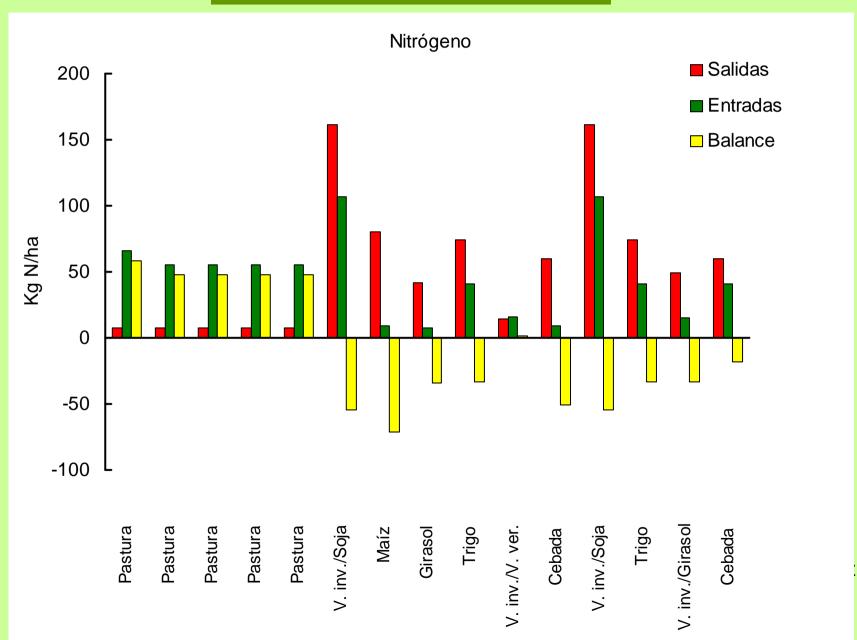


N fijado= 19 * Materia seca (t/ha/año); R²= 0.62

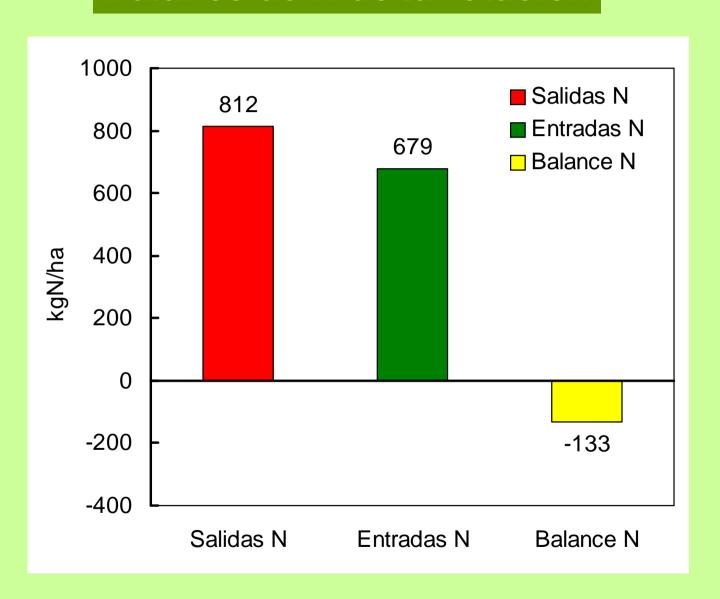
A: Fijación biológica de nitrógeno por cultivos de alfalfa en varias localidades de la Región Pampeana, datos promedio de 4 años. B: Relación entre la producción de biomasa de alfalfa y la cantidad de nitrógeno fijado. Elaborado con datos de Racca et al. (2001).

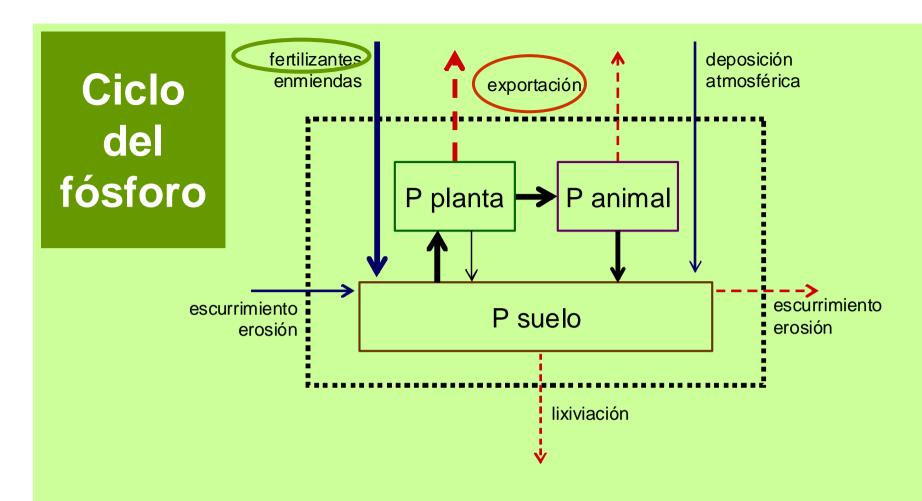
Entrada

Fijación biológica: soja


N fijado= 0.052 * Rendimiento (kgMS/ha); R²= 0.62

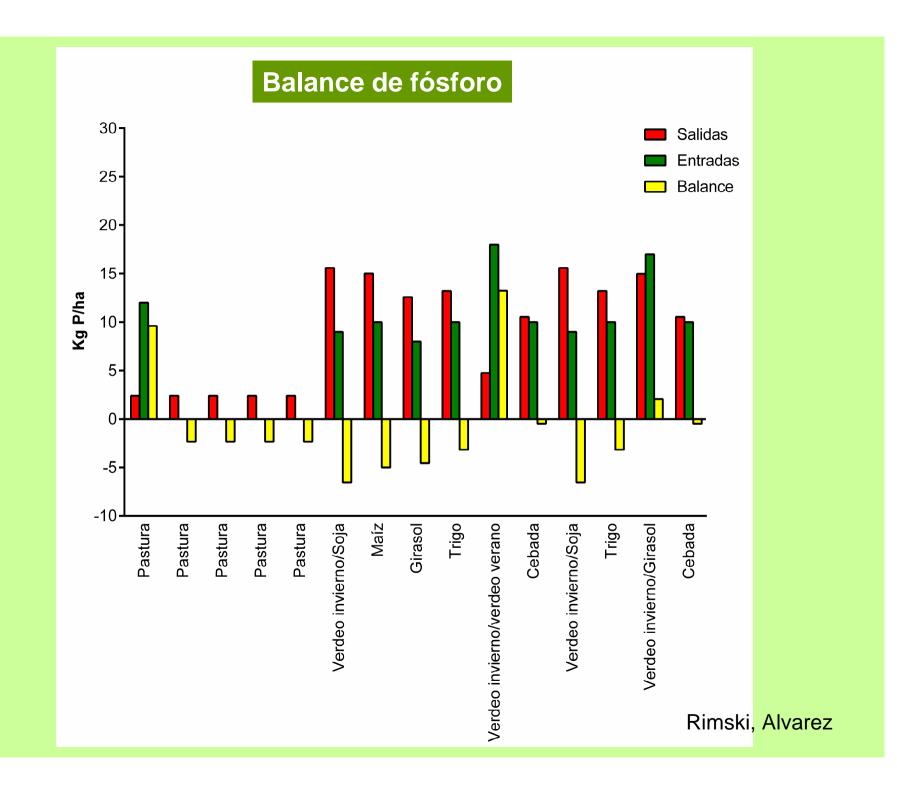
Fijación de nitrógeno en cultivos de soja en relación a la producción de biomasa y el rendimiento. Elaborado con recopilados por Di Ciocco et al. (2012).


		Fertiliz	zantes	Entradas fertilizantes	Entradas fijación
Año	Cultivo	Urea	PDA	N	N
		kg /	/ ha	kg / h	а
1	Pastura	0	60	10,8	55
2	Pastura	0	0	0	55
3	Pastura	0	0	0	55
4	Pastura	0	0	0	55
5	Pastura	0	0	0	55
6	Verdeo invierno	0	45	8,1	0
6	Soja	0	0	0	98,4
7	Maíz	0	50	9	0
8	Girasol	0	40	7,2	0
9	Trigo	70	50	41,2	0
10	Verdeo invierno	0	45	8,1	0
10	Verdeo verano	0	45	8,1	0
11	Cebada	0	50	9	0
12	Verdeo invierno	0	45	8,1	0
12	Soja	0	0	0	98,4
13	Trigo	70	50	41,2	0
14	Verdeo invierno	0	45	8,1	0
14	Girasol	0	40	7,2	0
15	Cebada	70	50	41,2	0

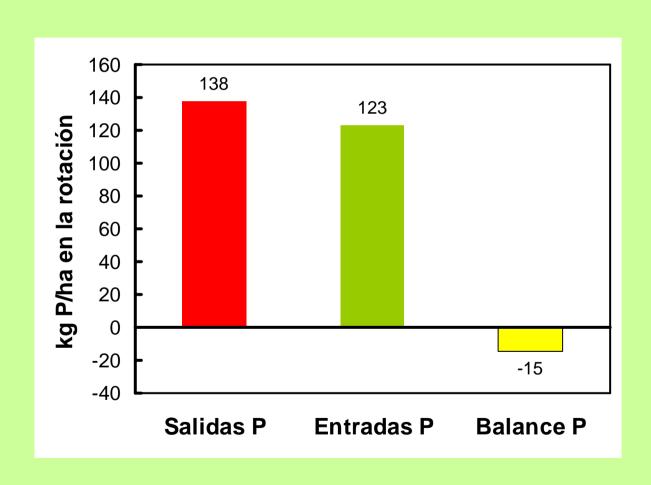

Año	Cultivo	Rendimiento	%N	Salidas N
Ano	Cultivo	kg/ha		kg / ha
1	Pastura	270	27.2	7.3
2	Pastura	270	27.2	7.3
3	Pastura	270	27.2	7.3
4	Pastura	270	27.2	7.3
5	Pastura	270	27.2	7.3
6	Verdeo invierno	270	27.2	7.3
6	soja	2200	7	154
7	maíz	5000	1.6	80
8	girasol	1850	2.25	42
9	trigo	3300	2.25	74
10	Verdeo invierno	270	27.2	7.3
10	verdeo verano	270	27.2	7.3
11	cebada	3500	1.7	60
12	Verdeo invierno	270	27.2	7.3
12	soja	2200	7	154
13	trigo	3300	2.25	74
14	Verdeo invierno	270	27.2	7.3
14	girasol	1850	2.25	42
15	cebada	3500	1.7	60

Balance de nitrógeno

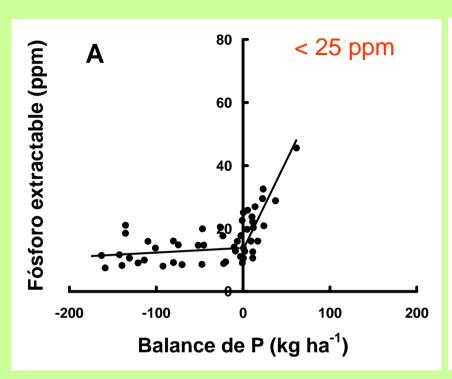
Balance de N de la rotación

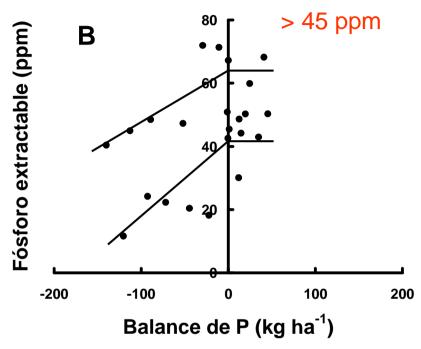

 ΔP agrosistema = P fertilizante – P exportado

Nutriente	Entradas	Salidas
	Fertilización	Cosecha
Fósforo		• Grano
		Carne

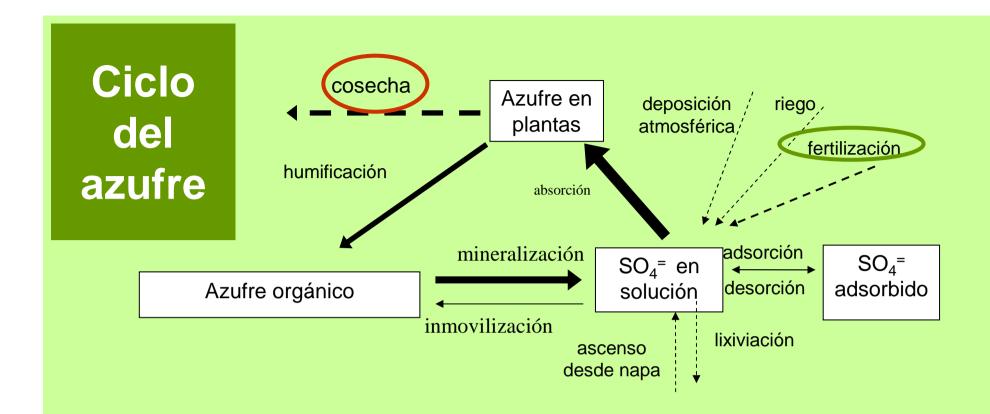

E n t r a d a

		Entradas fertilizantes	
Año	Cultivo	PDA	Р
		kg/	ha h
1	Pastura	60	12
2	Pastura	0	0
3	Pastura	0	0
4	Pastura	0	0
5	Pastura	0	0
6	Verdeo invierno	45	9
6	Soja	0	0
7	Maíz	50	10
8	Girasol	40	8
9	Trigo	50	10
10	Verdeo invierno	45	9
10	Verdeo verano	45	9
11	Cebada	50	10
12	Verdeo invierno	45	9
12	Soja	0	0
13	Trigo	50	10
14	Verdeo invierno	45	9
14	Girasol	40	8
15	Cebada	50	10

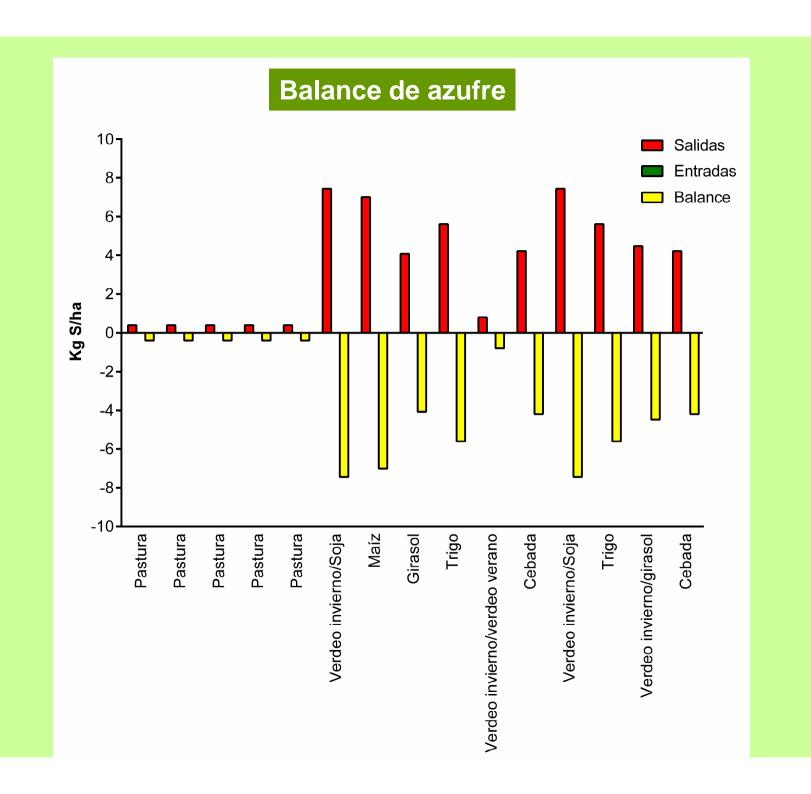

Año	Cultivo	Rendimiento	%P	Salidas P
Ano	Cultivo	kg/ha		kg / ha
1	Pastura	270	8.8	2.4
2	Pastura	270	8.8	2.4
3	Pastura	270	8.8	2.4
4	Pastura	270	8.8	2.4
5	Pastura	270	8.8	2.4
6	Verdeo invierno	270	8.8	2.4
6	soja	2200	0.6	13
7	maíz	5000	0.3	15
8	girasol	1850	0.68	13
9	trigo	3300	0.4	13
10	Verdeo invierno	270	8.8	2.4
10	verdeo verano	270	8.8	2.4
11	cebada	3500	0.3	11
12	verdero invierno	270	8.8	2.4
12	soja	2200	0.6	13
13	trigo	3300	0.4	13
14	Verdeo invierno	270	8.8	2.4
14	girasol	1850	0.68	13
15	cebada	3500	0.3	11



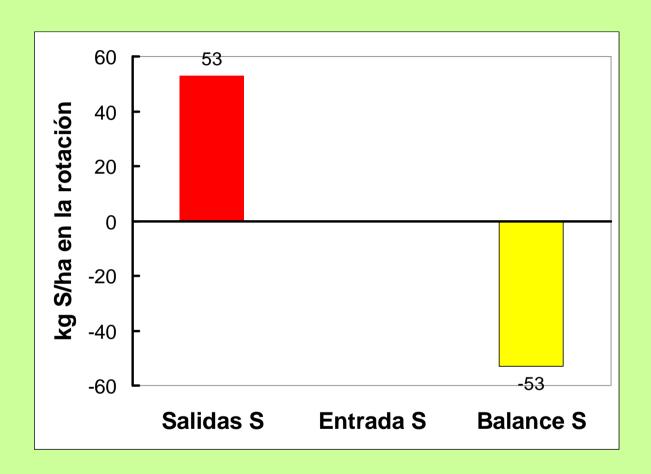
Balance de P de la rotación



Balance de P de la rotación y PBray



Relación entre el balance de fósforo (P fertilizante – P grano) y el fósforo extractable del estrato 0-20 cm de suelos cultivados de la Pampa Ondulada luego de 6 años de aplicar fertilizantes. A: datos de 4 experimentos con valores iniciales de fósforo extractable < 25 ppm. B: datos de 2 experimentos con valores de fósforo extractable > a 45 ppm; en este último caso se ajustó una recta a cada suelo. El balance de fósforo se manipuleó aplicando dosis diferentes de fertilizante fosforado en tratamientos contrastantes. Elaborado con datos de García et al. (2010).



ΔS agrosistema = S fertilizante – S exportado

Nutriente	Entradas	Salidas
	fertilizante	Cosecha
Azufre		Grano
		 Carne

Balance de S de la rotación

¿Qué nos dice el suelo? Análisis de suelo

Para que sea confiable....

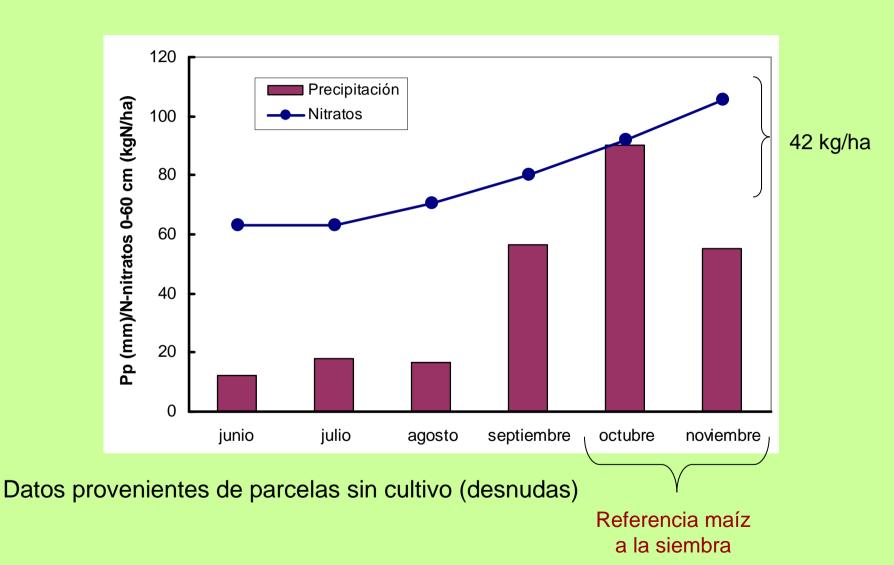
¿Cuántas submuestras se necesitan para caracterizar la fertilidad de un lote o unidad de manejo?

Manejo uniforme: 20-30 submuestras (Mallarino, 2001; Roberts, Henry, 2000)

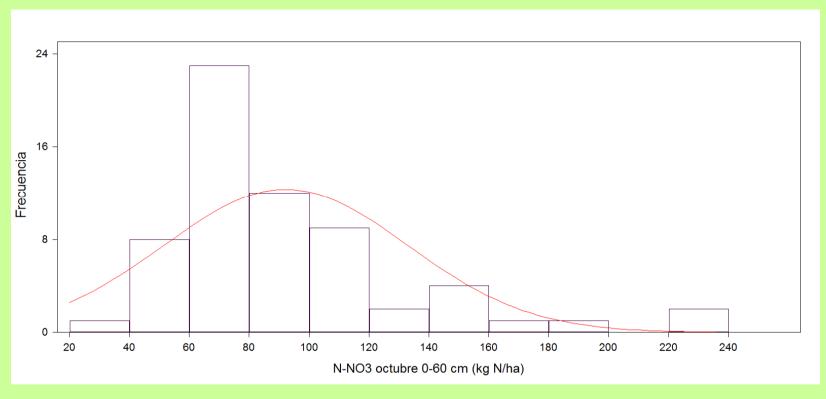
Lote: agrícola – ganadero, P. Ondulada, 100 ha, SD

Lote	Medida	рН	Carbono (%)	N-nitrato (ppm)	P extrac. (ppm)
Directa	Rango Promedio	5.5 - 6.5 5.8	0.9 - 1.8 1.4	2.8 - 13 7.7	2.0 - 257 12
	Coef. var.	2	11	22	220

La Sorpresa (SD)


7,8	7,3	5,9	17,4	6,1	7,3	29,3	6,7
24,2	4,6	4,6	2,9	2,7	4,5	4,3	4,3
5,7	5,5	5,5	5,0	9,1	17,4	6,9	4,6
7,3	5,3	6,6	6,4	9,1	8,7	3,9	24,2
5,3	18,9	6,4	5,0	7,7	3,6	3,6	10,9
3,4	5,9	11,9	6,1	5,2	9,3	4,3	5,2
11,4	4,8	8,5	3,0	21,7	24,5	6,4	3,9
8,5	3,0	2,0	5,0	4,3	5,7	6,8	5,5
12,9	7,3	8,6	6,0	6,6	5,0	8,0	5,3
2,7	2,3	11,9	16,9	6,0	4,0	4,0	6,0
10,9	34,5	257	60,0	8,0	6,6	28,2	2,7
9,6	15,6	38,5	8,6	2,0	6,3	50,4	17,2

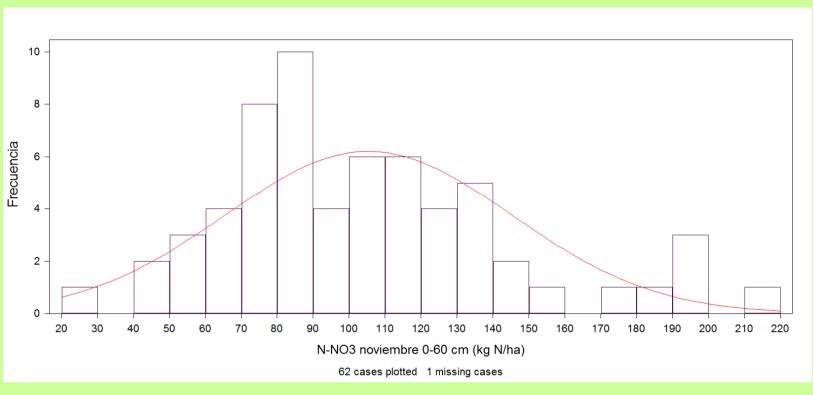
Recomendación


	рН	Carbono	Nitrógeno	Fósforo
Nº de submuetras	6-24	10-12	15-25	45-55
Variación Vertical	0-20 cm	0-20 cm	0-20 cm Estimar a 60 cm	0-20 cm
Variación temporal	Poco variable	Poco variable 3-4 años	A la siembra del cultivo	Cada 2-4 años

N - nitrato 0-60 cm (kg N/ha)

A. Giorno

Octubre: N-nitrato 0-60 cm (kgN/ha)



	promedio	min.	25 %	50%	75 %	máx.	Nº
N-NO ₃ octubre 0-60 cm (kgN/ha)	92	36	68	80	106	237	63

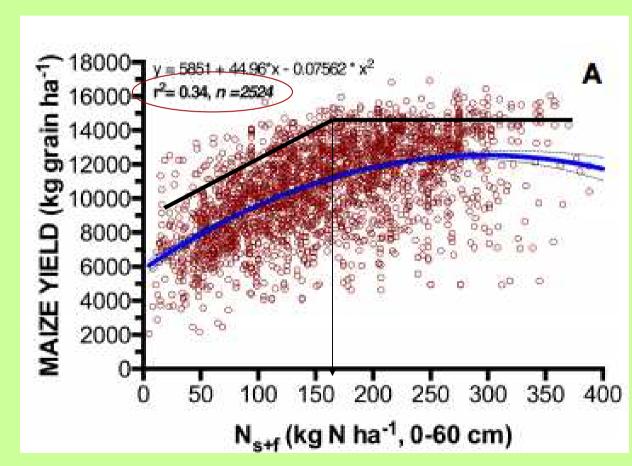
 $N-NO_3$ 0-60 cm (kgN/ha)= 33 + 1.24 NAN - 0.357 pp septiembre (mm)

 $R^2 = 0.42$; n = 38

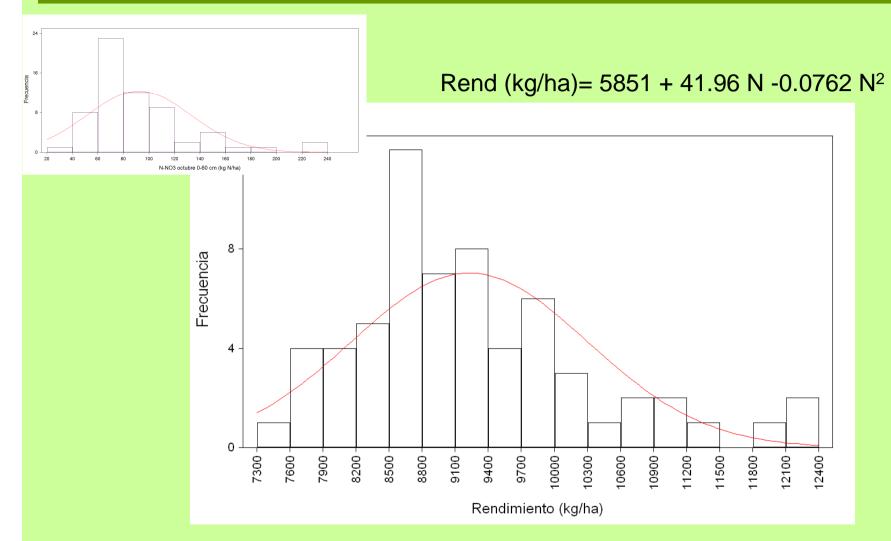
Noviembre: N-nitrato 0-60 cm (kgN/ha)

	promedio	min.	25 %	50%	75 %	máx.	Nº
N-NO ₃ noviembre 0-60 cm (kgN/ha)	105	26	77	99	124	219	62

 $N-NO_3$ 0-60 cm (kgN/ha)= 5.05 + 1.51 NAN - 0.226 pp octubre (mm)+ 7.88 MO (%)


 $R^2 = 0.57$; n = 38

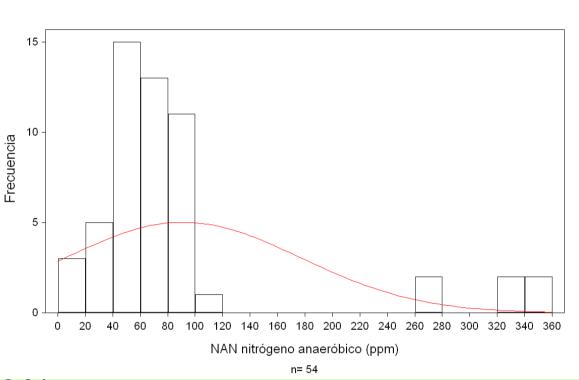
Relación: rendimiento *vs.*N-nitrato 0-60 cm + N fertilizante (kg N/ha)


498 ensayos de fertilización; n= 2524

Reportes INTA
CREA
Fertilizar
Revistas con y sin referato
Congresos
Tesis

- Vertisoles
- Argiudoles
- •Hapludoles
- •Haplustoles
- Entisoles

Rendimientos estimados a partir de N-nitrato 0-60 cm (kg N/ha)



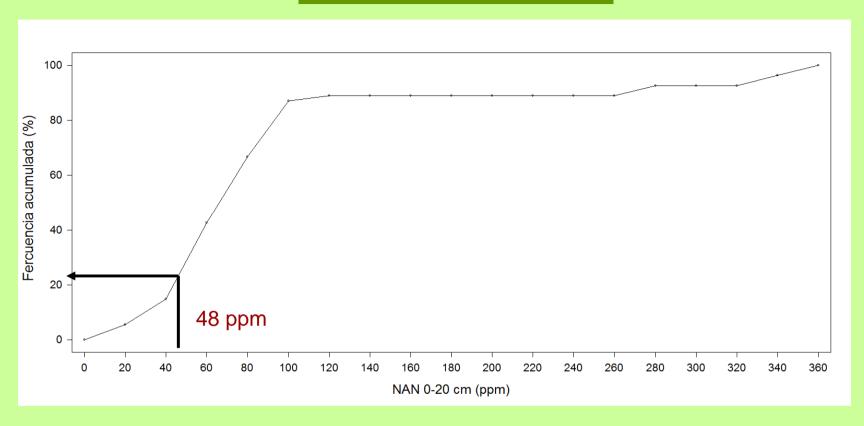
	promedio	min.	25 %	50%	75 %	máx.	Nº
Rendimiento (kg/ha)	9229	7380	8557	8949	9762	12258	63

Comparar rendimientos estimados con los obtenidos

Correndo et al. 2015

NAN 0-20 cm (ppm)

NAN vs. MO r= 0.94


	promedio	min.	25 %	50%	75 %	máx.	No
NAN 0-20 cm (ppm)	91	4	56	64	84	357	54

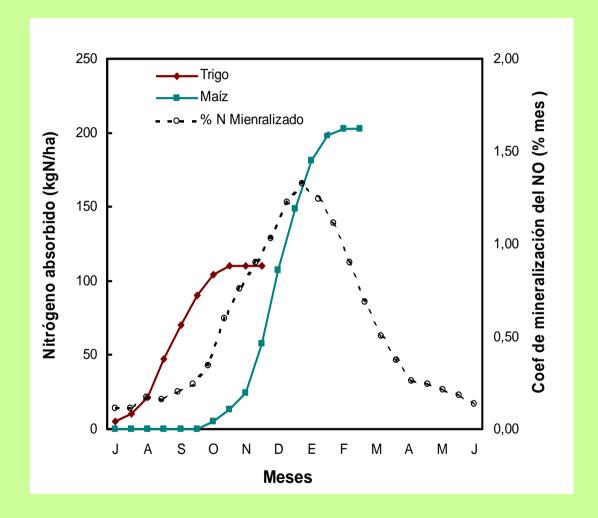
Ensayos de respuesta del maíz a 60 kgN/ha Calviño y Echeverria (2003)

Inc. Rend. (%)= 72.5- 1.38 NAN (ppm) cuando NAN < 48 ppm;

Inc. Rend. = o si NAN > 48 ppm

NAN 0-20 cm (ppm)

	promedio	min.	25 %	50%	75 %	máx.	Nº
NAN 0-20 cm (ppm)	91	4	56	64	84	357	54

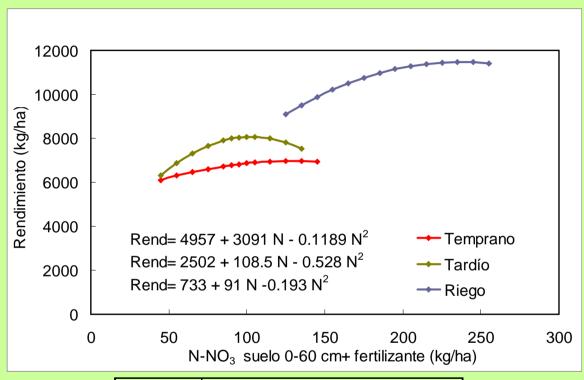

Ensayos de respuesta del maíz a 60 kgN/ha Calviño y Echeverria (2003)

Inc. Rend. (%)= 72.5- 1.38 NAN (ppm) cuando NAN < 48 ppm;

Inc. Rend = o si NAN > 48 ppm

Sincronización de la mineralización con los requerimientos del cultivo

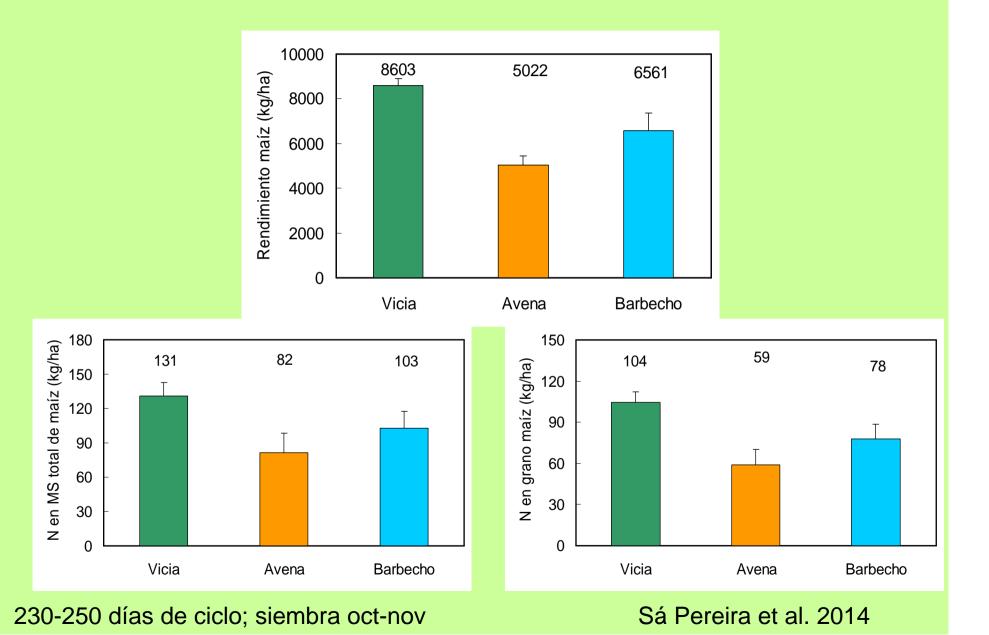
Pampa Ondulada

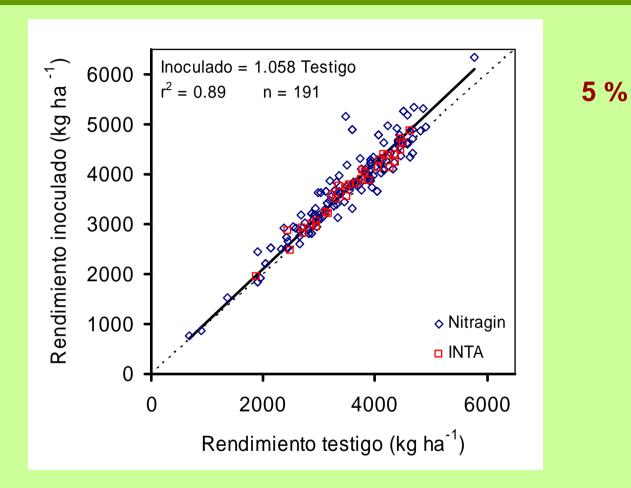


Coef: 0.8-1 % julio-octubre

Alvarez, 2008

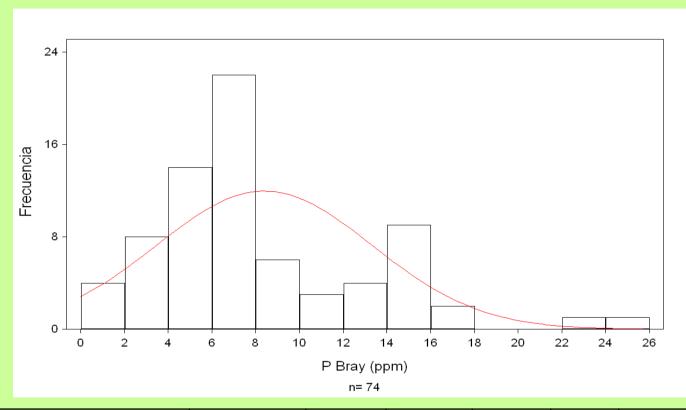
2,4% setiembre-enero (0-30 cm)


Relación: rendimiento *vs.*N-nitrato 0-60 cm + N fertilizante (kg N/ha)


	N s 0-60 cm+f objetivo (kgN/ha)							
RP	temprano tardio riego							
10	88	93	210					
11	84	92	207					
12	80	91	205					
13	75	90	202					
14	71	89	199					
15	67	89	197					

A. Giorno

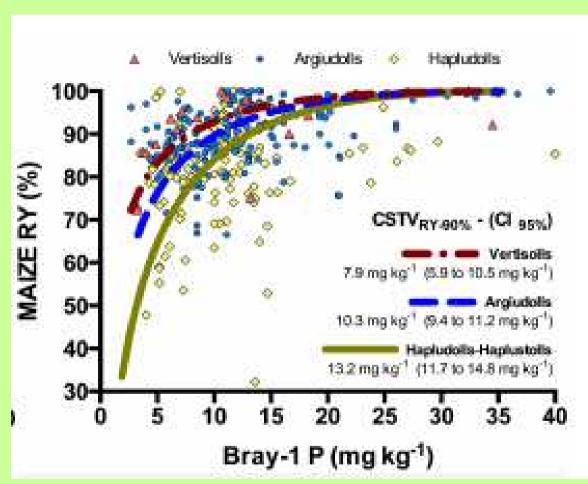
Incorporación de cultivos de cobertura



Soja inoculación: efecto de la inoculación

Efecto de la inoculación sobre el rendimiento en ensayos realizados en suelos con antecedentes de soja en la región pampeana (Diaz Zorita et al., 2003; 2004; 2005; Mousegne et al., 2005; Ferraris & Couretot, 2005; 2006; Ventimiglia & Carta, 2006; Bodrero et al., 2005; Fontanetto et al., 2004; 2006).

P Bray 0-20 cm (ppm)


	promedio	min.	25 %	50%	75 %	máx.	No
P Bray							
0-20 cm (ppm)	8.4	1	5.3	6.7	11.4	24.6	74

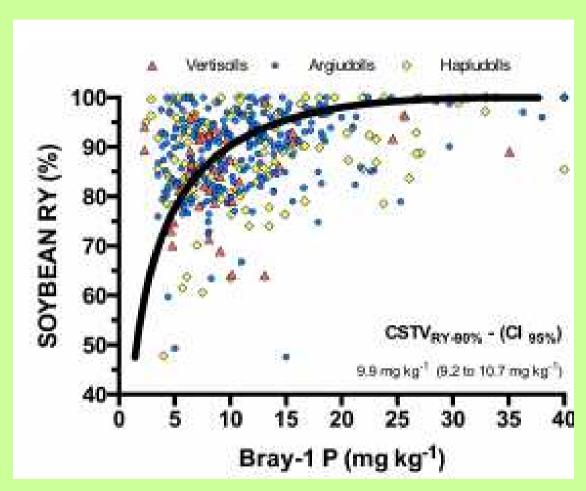
Relación: rendimiento relativo vs. P Bray (ppm)

258 ensayos de fertilización

Reportes INTA
CREA
Fertilizar
Revistas con y sin referato
Congresos
Tesis

Vertisoles 7.9 ppm Argiudoles 10.3 ppm Hapludoles-Haplustoles 13.2 ppm

P Bray 0-20 cm (ppm)

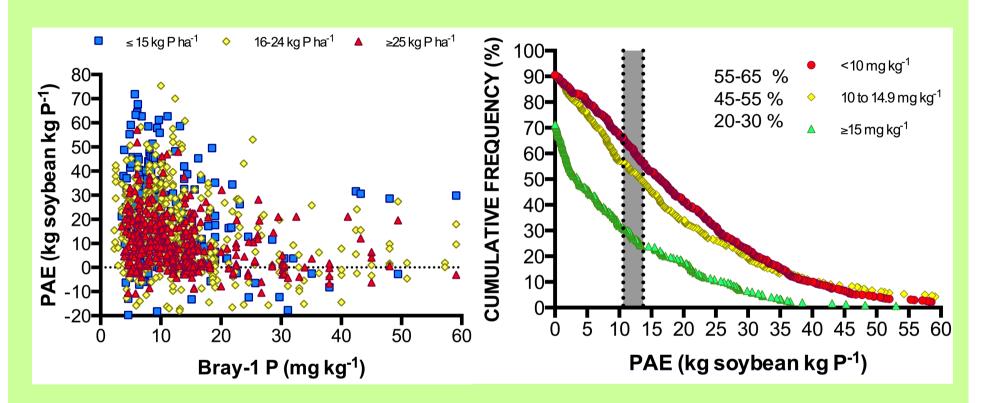

	promedio	min.	25 %	50%	75 %	máx.	Nº
P Bray 0-20 cm (ppm)	8.4	1	5.3	6.7	11.4	24.6	74

Relación: rendimiento relativo vs. P Bray (ppm)

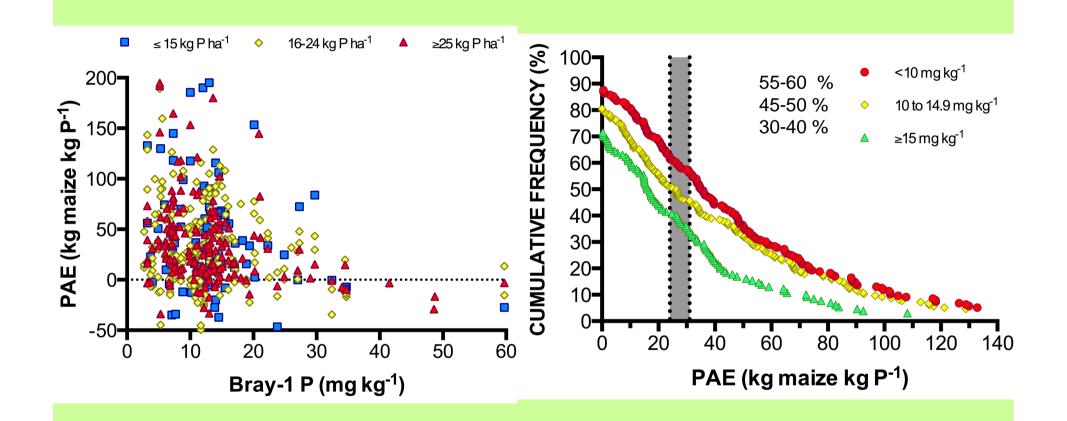
436 ensayos de fertilización

Reportes INTA
CREA
Fertilizar
Revistas con y sin referato
Congresos
Tesis

9.9 ppm

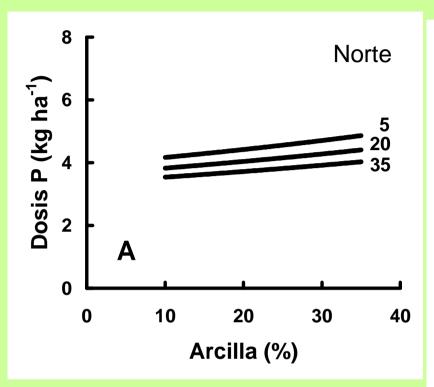


P Bray 0-20 cm (ppm)



	promedio	min.	25 %	50%	75 %	máx.	Nº
P Bray 0-20 cm (ppm)	8.4	1	5.3	6.7	11.4	24.6	74

Soja: respuesta vs. P Bray (ppm)




Maíz: respuesta vs. P Bray (ppm)

Correndo et al. 2015

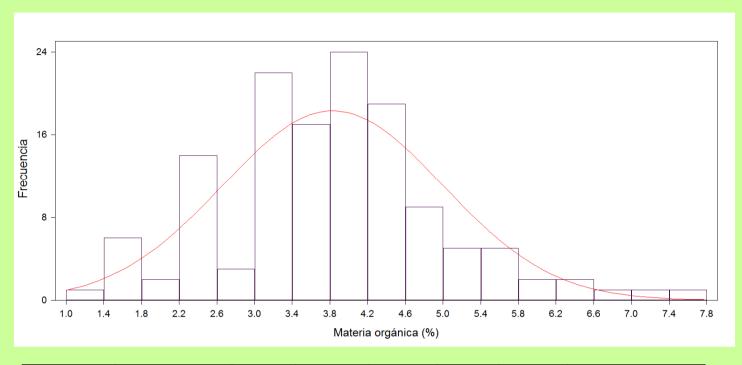
Condiciones controladas

Estimación de la dosis de fertilizante fosforado necearías para incrementar el fósforo extractable del suelo en 1 ppm en el estrato 0-20 cm de suelos con una densidad aparente de 1.25 g ml⁻¹. A: Pampa Ondulada, B: Sur Bonaerense. Las estimaciones se han realizado para suelos con la variación textural posible de encontrar en Molisoles de estas subregiones y para distintos niveles de fósforo extractable (números junto a las curvas) usando el modelo (Rubio et al. 2007)

Fósforo

- •Las dosis utilizadas son casi compensatorias pero no permiten el enriquecimiento del suelo
- •La mayor parte de los análisis presentan valores por debajo de los umbrales
- •Momentos económicos favorables, inversión en fósforo
- •Utilizar criterios de enriquecimiento hasta umbrales o eficiencias (criterio económico)

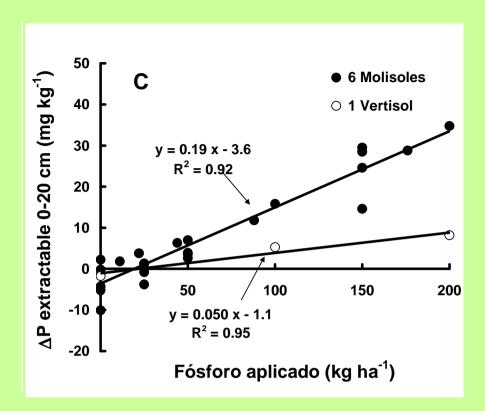
Nitrógeno


- •Planteos mixtos: asegurar una buena fijación biológica
- •Evaluar la probabilidad de respuesta en función de la capacidad productiva del suelo/sistema
- •Los niveles de nitratos permitirían cubrir los requerimientos de los rendimientos promedios
- •Los valores de NAN muestran una buena capacidad de aporte de N desde el pool orgánico
- Tener presentes los riesgos de lixiviación

Una rotación Clásica que se puede decir "Promedio":

1	2	3	4	5	6	7	8	9	10	111	12	13	14	15
P1	P2	P2	P4	P5	VI/SJ	MZ	GIR	TR	VI/W	CB	VI/SJ	TR	VI/GIR	CB

Adicional


Materia orgánica 0-20 cm

	promedio	min.	máx.	25 %	50%	75 %	nº de casos
MO (%)	3.83	1.06	7.72	3.26	3.82	4.39	134

	M	0
	r	Р
arcilla	0.38	<0.0001
limo	0.43	<0.0001
arena	-0.55	<0.0001
arcilla+limo	0.55	<0.0001

Cambio a campo del nivel de fósforo extractable (DP extractable) de suelos bajo cultivo de la Región Pampeana en función de la dosis de fósforo del fertilizante aplicada un año antes del muestreo. Suelos del Entre Ríos, sudeste de Córdoba y Sudeste Bonaerense bajo cultivo de trigo o trigo/soja de segunda. Muestreo 0-20 cm excepto en un experimento que se muestreó 0-18 cm, 7 experimentos. Elaborado con datos de Barbagelata (2012), Berado y Grattone (2000) y Echeverría et al. (2004).

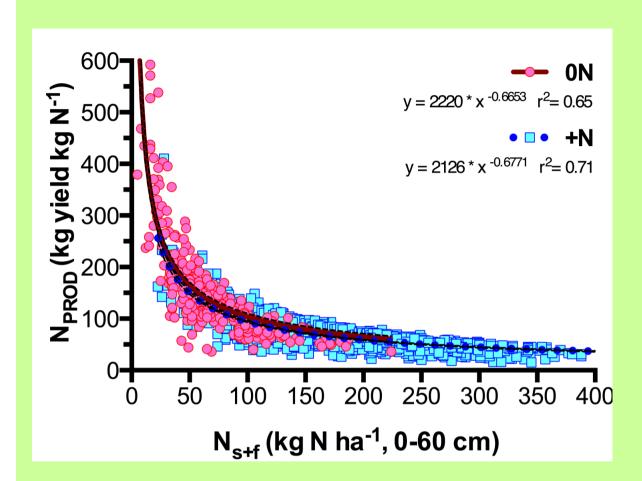
Una rotación Clásica que se puede decir "Promedio":

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P1	P2	P2	P4	P5	VI/SJ	MZ	GIR	TR	VI/W	CB	VI/SJ	TR	VI/GIR	CB

Proporciones resultantes de la secuencia:

P	VI	w	SJ	GIR	MZ	TR	СВ	SUMA
33%	27%		20%	13%	7%	13%	13%	127%

Potencial Productivo


		Bajo	Medio	Alto
P	Pastura	5000	6000	7000
VI	Verdeo Inv	2500	3000	3500
W	Verdeo Verano	4000	5500	7000
SJ	Soja 1"	1600	2200	2800
MZ	Maiz Cos	4000	5000	6000
GIR	Girasol	1600	1850	2100
TR	Trigo Pan	2500	3300	4100
CB.	Cehada	2700	3500	4300

FDA utilizado en promedio (por año)

Bajo	Medio	Alto
10	12	16
35	45	55
35	45	55
0	0	0
40	50	60
30	40	50
40	50	60
40	50	60

también hay una "ganadería agrícola" con 20% de pasturas, que te lleva a una secuencia agrícola de 12 años en vez de 10, y donde los cultivos de gruesa se reemplazan por verdeos de verano, siendo la fina toda cehada para grano que se usa para consumo en corrales.

En ésta ultima rotación se ve una deficiencia marcada de nitrogeno a "ojo", y los análsis dan muy bajos.

